

Amplex Red

Catalog Number	Packaging Size
C291	10 mg

Storage upon receipt: -20°C, protected from light

Introduction

10-Acetyl-3,7-dihydroxyphenoxazine (Known as **Amplex Red**^{TM} reagent, Trade Mark of Molecular Probes) is regarded as the best fluorogenic substrate for peroxidase, because it is highly specific and stable. The substrate itself is nearly colorless and nonfluorescent until it is oxidized by H_2O_2 in the presence of horseradish peroxidase (HRP) to become the highly red fluorescent resorufin. Because H_2O_2 is produced in many different enzymatic reactions, the Amplex Red reagent can be used to detect the activity of many different enzymes.

Specifications

Label:	Resorufin	
Ex/Em:	571/585 nm	
Detection Method:	Fluorescent	HO O OH
Molecular Formula:	C ₁₄ H ₁₁ NO ₄	
Molecular Weight:	257.25	V N V
CAS Number:	119171-73-2	C-CH ₃
Storage Conditions:	-20°C, protected from light	
Shipping Condition:	Room Temperature	

Applications

HRP (Horseradish Peroxidase) Substrate

References:

 Design and testing of a fluorescence glucose sensor which incorporates a bioinductive material. Chen HC, Ahmed J

Biomed Sci Instrum (2004) 40:149-154

 Inhibition of skeletal muscle S1-myosin ATPase by peroxynitrite.
Tiago T, Simão S, Aureliano M, Martín-Romero FJ, Gutiérrez-Merino C Biochemistry (2006) 45:3794-3804

3. The production of reactive oxygen species in intact isolated nerve terminals is independent of the mitochondrial membrane potential.

Sipos I, Tretter L, Adam-Vizi V

Neurochem Res (2003) 28:1575-1581

Amplex Red Page 1