7040 Virginia Manor Road Beltsville, MD 20705, USA Web: www.abpbio.com; Email: info@abpbio.com

FDG (Fluorescein di-β-D-galactopyranoside)

Catalog Number	Packaging Size
C279	5 mg

Storage upon receipt: -20°C, protected from light

Introduction

Fluorescein di-\beta-D-galactopyranoside (FDG) is one of the most sensitive substrates for galactosidases. Nonfluorescent FDG is sequentially hydrolyzed by β -galactosidase, first to fluorescein monogalactoside (FMG) and then to highly fluorescent fluorescein. Enzyme-mediated hydorlysis of FDG can be followed by the increase in either absorbance or fluorescence.

Specifications

Label:	Fluorescein	
Ex/Em:	488/515 nm	
Detection Method:	Fluorescent	HO
Molecular Formula:	C ₃₂ H ₃₂ O ₁₅	OH TITOH OH
Molecular Weight:	656.6	OH CO
CAS Number:	17817-20-8	
Storage Conditions:	-20°C, protected from light	() **
Shipping Condition:	Room Temperature	

Applications

Galactosidase Substrate

References:

- Hydrophobic moiety of cationic lipids strongly modulates their transfection activity. Hydrophobic moiety of cationic lipids strongly modulates their transfection activity. Koynova R, Tenchov B, Wang L, Macdonald RC,
 - Mol Pharm (2009) 6:951-958
- 2. The inter-relatedness and interdependence of mouse T cell receptor gammadelta+ and alphabeta+ cells. The inter-relatedness and interdependence of mouse T cell receptor gammadelta+ and alphabeta+ cells.

Pennington DJ, Silva-Santos B, Shires J, Theodoridis E, Pollitt C, Wise EL, Tigelaar RE, Owen MJ, Hayday AC

Nat Immunol (2003) 4:991-998

3. Cellular Differentiation in Submerged Monolayers of Dictyostelium discoideum: Possible Functions of Cytoplasmic Ca²⁺ and DIF.Cellular Differentiation in Submerged Monolayers of Dictyostelium discoideum: Possible Functions of Cytoplasmic Ca2+ and DIF.

Abe T, Maeda Y

Dev Growth Differ (1991) 33:469-469