

5-Oregon Green 488, SE [5-Oregon Green 488 carboxylic acid, succinimidyl ester]

Catalog Number	Packaging Size
C114	5 mg

Storage upon receipt: -20°C, protect from light

Introduction

The amine-reactive **Oregon Green 488 carboxylic acid, succinimidyl ester** can be used to create green fluorescent bioconjugates with excitation/emission maxima \sim 496/524 nm. This fluorinated analog of fluorescein overcomes some of the key limitations of fluorescein, including greater photostability and a lower pK_a (pK_a \sim 4.7 versus 6.4 for fluorescein), making its fluorescence essentially pH insensitive in the physiological pH range.

Specifications

Label:	Oregon Green 488	
Ex/Em:	496/524 nm	HO 0 0
Detection Method:	Fluorescent	
Solubility:	DMSO, DMF	F T C-OH
Molecular Formula:	C ₂₅ H ₁₃ F ₂ NO ₉	
Molecular Weight:	509.38	
CAS Number:	198139-51-4	N-0-C
Storage Conditions:	-20°C, protect from light	7 6
Shipping Condition:	Room Temperature	

Applications

Fluorescent labeling

References:

 A comparison of the emission efficiency of four common green fluorescence dyes after internalization into cancer cells.

Hama Y, Urano Y, Koyama Y, Bernardo M, Choyke PL, Kobayashi H Bioconjug Chem (2006) 17:1426-1431