

CellCycle™ Blue Stain

Catalog Number: A053

Table 1. Product Package and Storage

Material	Amount	Concentration	Storage	Stability
CellCycle™ Blue Stain	100 μL	500X	-20 °C	One year when stored as directed.

Number of assays: 100 assays.

Approximate fluorescence excitation/emission maxima, in nm: 350/461, bound to DNA.

Introduction

Live cell studies of cellular DNA content and cell cycle distribution are useful to detect variations of growth patterns due to a variety of physical, chemical, or biological means, to monitor apoptosis, and to study tumor behavior and suppressor gene mechanisms. In a given population, cells are distributed among three major phases of cell cycle: G_0/G_1 phase (one st of paired chromosomes per cell), S phase (DNA synthesis with variable amount of DNA), and G_2/M phase (two sets of paired chromosomes per cell, prior to cell division). DNA content can be measured using fluorescent, DNA-selective stains that exhibit emission signals proportional to DNA mass. Flow cytometric analysis of these stained populations is then used to produce a frequency histogram that reveals the various cell cycle phases. This analysis is typically performed on permeabilized or fixed cells using a cell-impermeant nucleic acid stain, but is also possible using live cells and a cell-permeant nucleic acid stain.

The CellCycle[™] Blue stain is DNA-selective, cell membrane-permeant, and nonfluorescent stain for DNA content analysis in living cells. The CellCycle[™] Blue stain is fluorescent upon binding to double-stranded DNA. CellCycle[™] Blue stain is excited using both UV and 405 nm laser with emission ~460 nm.

The staining protocol is simple and includes incubating suspended cells in the presence of CellCycle[™] stain and directly measuring the fluorescence without the need for any additional treatment or centrifugation steps. This live cell stain allows the simultaneous co-staining of the cell population for other parameters, and allows for the possibility of cell sorting based on DNA content.

Materials required but not provided

- Cells and culture medium
- Flow cytometer tubes

Experimental Protocols

Note: The following staining protocol was optimized using Jurkat cells, a human T-cell leukemia line, in complete RPMI medium containing 10% fetal bovine serum with staining at 37°C, but can be adapted to most cell types. These stains can also be used for cells suspended in Hanks' Balanced Salt Solution (HBSS) or phosphate-buffered saline (PBS).

- 1. Remove the CellCycle[™] Blue stain from the freezer and allow it to equilibrate to room temperature.
- Prepare flow cytometry tubes each containing 0.5 mL of cell suspension in complete media at a concentration of 1 x 10⁶ cells/mL.
- 3. To each tube add 1 µL of CellCycle™ Blue stain.
- 4. Incubate at 37°C for 30 minutes, protected from light.
- 5. Analyze the samples without washing, using UV or 405 nm excitation, and collect emission using a 450/50 bandpass filter or equivalent.